一種新型的IGBT短路保護電路的設計
摘要:提出了一種直接檢測IGBT發生短路故障的方法,在詳細分析IGBT短路檢測原理的基礎上給出了相應的IGBT短路保護電路。仿真及實驗結果均證明該電路工作穩定可靠,能很好地對IGBT實施有效的保護。關鍵詞:IGBT 短路保護 電路設計
固態電源的基本任務是安全、可靠地為負載提供所需的電能。對電子設備而言,電源是其核心部件。負載除要求電源能供應高質量的輸出電壓外,還對供電系統的可靠性等提出更高的要求。
IGBT是一種目前被廣泛使用的具有自關斷能力的器件?開關頻率高?廣泛應用于各類固態電源中。但如果控制不當,它很容易損壞。一般認為IGBT損壞的主要原因有兩種:一是IGBT退出飽和區而進入了放大區?使得開關損耗增大;二是IGBT發生短路,產生很大的瞬態電流,從而使IGBT損壞。IGBT的保護通常采用快速自保護的辦法?即當故障發生時,關斷IGBT驅動電路,在驅動電路中實現退飽和保護;或者當發生短路時,快速地關斷IGBT。根據監測對象的不同?IGBT的短路保護可分為Uge監測法或Uce監測法?二者原理基本相似?都是利用集電極電流IC升高時Uge或Uce也會升高這一現象。當Uge或Uce超過Uge?sat?或Uce?sat?時,就自動關斷IGBT的驅動電路。由于Uge在發生故障時基本不變,而Uce的變化較大?并且當退飽和發生時?Uge變化也小?難以掌握?因而在實踐中一般采用Uce監測技術來對IGBT進行保護。本文研究的IGBT保護電路,是通過對IGBT導通時的管壓降Uce進行監測來實現對IGBT的保護。
采用本文介紹的IGBT短路保護電路可以實現快速保護,同時又可以節省檢測短路電流所需的霍爾電流傳感器,降低整個系統的成本。實踐證明,該電路有比較大的實用價值,尤其是在低直流母線電壓的應用場合,該電路有廣闊的應用前景。該電路已經成功地應用在某型高頻逆變器中。
1 短路保護的工作原理
圖1(a)所示為工作在PWM整流狀態的H型橋式PWM變換電路(此圖為正弦波正半波輸入下的等效電路,上半橋的兩只IGBT未畫出),圖1(b)為下半橋兩只大功率器件的驅動信號和相關的器件波形。現以正半波工作過程為例進行分析(對于三相PWM電路,在整流、逆變工作狀態或單相DC/DC工作狀態下,PWM電路的分析過程及結論基本類似)。
在圖1所示的電路中,在市電電源Us的正半周期,將Ug2.4所示的高頻驅動信號加在下半橋兩只IGBT的柵極上,得到管壓降波形UT2?D。其工作過程分析如下:在t1~t2時刻,受驅動信號的作用,T2、T4導通(實際上是T2導通, D4處于續流狀態),在Us的作用下通過電感LS的電流增加,在T2管上形成如圖1(b)中UT2?D所示的按指數規律上升的管壓降波形,該管壓降是通態電流在IGBT導通時的體電阻上產生的壓降;在t2~t3時刻,T2、T4關斷,由于電感LS中有儲能,因此在電感LS的作用下,二極管D2、D4續流,形成圖1(b)中UT2.D的陰影部分所示的管壓降波形,以此類推。分析表明,為了能夠檢測到IGBT導通時的管壓降的值,應該將在t1~t2時刻IGBT導通時的管壓降保留,而將在t2~t3時刻檢測到的IGBT的管壓降的值剔除,即將圖1(b)中UT2.D的陰影部分所示的管壓降波形剔除。由于IGBT的開關頻率比較高,而且存在較大的開關噪聲,因此在設計采樣電路時應給予足夠的考慮。
圖2 IGBT短路保護電路原理圖
根據以上的分析可知,在正常情況下,IGBT導通時的管壓降Uce(sat)的值都比較低,通常都小于器
[1] [2]