- 相關推薦
MSP430F149在電力測控保護產品中的應用
摘要:介紹使用MSP430F149在電力測控保護產品研制中實現基本參數測量的軟硬件設計方法,及該芯片在使用中應用注意的問題和相應的處理措施。關鍵詞:MSP430F149 電力測控 抗干擾
MSP430F149(以下簡稱“F149”)是德州儀器(TI)公司推出超低功耗Flash型16位RISC指令集單片機。F149有豐富的內部硬件資源,是一款性價比極高的工業級芯片。在應用中,F149不需做過多的擴展,適合要求快速處理的實時系統,故可在電力系統微機測量和保護方面得以應用。詳細的F149資料可參閱有關文獻,本文主要對電力系統中基本參數測量的實現方法和開發中一些應注意的問題進行論述。
1 F149外圍模擬信號調理
在電力系統微機測量中,通常將一次額定電流和電壓通過電流互感器(TA)、電壓互感器(TV)分別轉換為0~5A的電流信號和0~100V的電壓信號,該信號再經一級互感器轉換為數百mV~幾V的電壓信號,具體輸出電壓的幅值,可根據實際電路的情況來定制。
F149內置的模數轉換器(ADC)的單極性ADC,其輸入范圍0~2.5V。對于雙極性的輸入信號,必須轉換為單極性輸入信號,即對信號進行直流偏置。實現直流偏置可采用電阻分礦井或運放升壓的方式。電阻分壓方式的電路形式如圖1所示,這種電路實際上采用的是單電源供電,可雙極性輸入的ADC芯片內部結構,+2.5V的基準可由F149提供。運放升壓的方式是利用運放的特性將零點進行偏置,如圖2所示,輸入與輸出的關系有:V0=1.25V-Vi。可見,輸入與輸出在相位上是反相的,在使用多級運放對信號進行放大或縮小處理時,應保證各路輸出信號相位的一致。當然,相位的處理也可通過軟件的數據處理來實現。
電阻分壓方式具有結構簡單,成本低的優點,且允許幅值較大的雙極性模擬信號在板內傳輸,在外界干擾一定的時候,提高了信噪比。對于F149內部的積分型ADC而言,電阻分壓方式的輸入阻抗較大,為保證片內電容的充電時間,以達到應有的測量精度,需相應延長采樣的時間。
運放升壓方式需要精密運放的配合,成本較高,且低阻抗輸出的+0.625V基準源也不易得到,但電路的輸出阻抗低,可提高ADC的采樣速度。
電力系統中電流測量的范圍很大,在額定值1.2倍范圍內,要求測量精度為0.5級;在1.2~20倍保護范圍內,要求精度較低,為3級。在電路設計中,通常使用可編程PGA(增益放大器)來解決大范圍信號測量的問題。考慮PGA方式判斷、切換所需的時間較長和保護范圍內對測量的高實時性要求,在本系統中,采取對電流的兩段范圍同時采樣的方法,即將電流信號一分為二,保護范圍內的信號進行壓縮處理,使用兩路A/D口同時進行采樣。
對于三相電路,此時有3路電流測量信號、3路電流保護信號和3路電壓信號,共9路信號,而F149僅提供8路外部信號采樣通道。為此,將F149的負參考電平VeREF測量通道用于信號測量。
[1] [2] [3] [4]
【MSP430F149在電力測控保護產品中的應用】相關文章:
無機納米材料在電力環保中的應用04-26
CMAC網絡建模在非線性預測控制中的應用04-28
面向對象測試方法在觀測控制系統中的應用04-28
設計在文化遺產保護中的應用04-27
核技術在環境保護中的應用05-02
核技術在環境保護中的應用04-26
人性化設計在機床產品中的應用04-25
項目管理在汽車新產品開發中的應用05-02
人性化設計在機床產品中的應用04-28