- 相關推薦
飛機發動機
飛機發動機1、活塞式發動機時期
早期液冷發動機居主導地位
很早以前,我們的祖先就幻想像鳥一樣在天空中自由飛翔,也曾作過各種嘗試,但是多半因為動力源問題未獲得解決而歸于失敗。最初曾有人把專門設計的蒸汽機裝到飛機上去試,但因為發動機太重,都沒有成功。到19世紀末,在內燃機開始用于汽車的同時,人們即聯想到把內燃機用到飛機上去作為飛機飛行的動力源,并著手這方面的試驗。
1903年,萊特兄弟把一臺4缸、水平直列式水冷發動機改裝之后,成功地用到他們的"飛行者一號"飛機上進行飛行試驗。這臺發動機只發出8.95 kW的功率,重量卻有81 kg,功重比為0.11kW/daN。發動機通過兩根自行車上那樣的鏈條,帶動兩個直徑為2.6m的木制螺旋槳。首次飛行的留空時間只有12s,飛行距離為36.6m。但它是人類歷史上第一次有動力、載人、持續、穩定、可操作的重于空氣飛行器的成功飛行。
以后,在飛機用于戰爭目的的推動下,航空特別是在歐洲開始蓬勃發展,法國在當時處于領先地位。美國雖然發明了動力飛機并且制造了第一架軍用飛機,但在參戰時連一架可用的新式飛機都沒有。在前線的美國航空中隊的6287架飛機中有4791架是法國飛機,如裝備伊斯潘諾-西扎V型液冷發動機的"斯佩德"戰斗機。這種發動機的功率已達130~220kW, 功重比為0.7kW/daN左右。飛機速度超過200km/h,升限6650m。
當時,飛機的飛行速度還比較小,氣冷發動機冷卻困難。為了冷卻,發動機裸露在外,阻力又較大。因此,大多數飛機特別是戰斗機采用的是液冷式發動機。期間,1908年由法國塞甘兄弟發明旋轉汽缸氣冷星型發動機曾風行一時。這種曲軸固定而汽缸旋轉的發動機終因功率的增大受到限制,在固定汽缸的氣冷星型發動機的冷卻問題解決之后退出了歷史舞臺。
兩次世界大戰之間的重要技術發明
在兩次世界大戰之間,在活塞式發動機領域出現幾項重要的發明:發動機整流罩既減小了飛機阻力,又解決了氣冷發動機的冷卻困難問題,甚至可以的設計兩排或四排汽缸的發動機,為增加功率創造了條件;廢氣渦輪增壓器提高了高空條件下的進氣壓力,改善了發動機的高空性能;變距螺旋槳可增加螺旋槳的效率和發動機的功率輸出;內充金屬鈉的冷卻排氣門解決了排氣門的過熱問題;向汽缸內噴水和甲醇的混合液可在短時內增加功率三分之一;高辛烷值燃料提高了燃油的抗爆性,使汽缸內燃燒前壓力由2~3逐步增加到5~6,甚至8~9,既提高了升功率,又降低了耗油率。
從20世紀20年代中期開始,氣冷發動機發展迅速,但液冷發動機仍有一席之地在此期間,在整流罩解決了阻力和冷卻問題后,氣冷星型發動機由于有剛性大,重量輕,可靠性、維修性和生存性好,功率增長潛力大等優點而得到迅速發展,并開始在大型轟炸機、運輸機和對地攻擊機上取代液冷發動機。在20世紀20年代中期,美國萊特公司和普·惠公司先后發展出單排的"旋風"和"颶風"以及"黃蜂"和"大黃蜂"發動機,最大功率超過400kW,功重比超過1kW/daN。到第二次世界大戰爆發時,由于雙排氣冷星型發動機的研制成功,發動機功率已提高到600~820kW。此時,螺旋槳戰斗機的飛行速度已超過500km/h,飛行高度達10000m。
在第二次世紀大戰期間,氣冷星型發動機繼續向大功率方向發展。其中比較著名的有普·惠公司的雙排"雙黃蜂"((R-2800)和四排"巨黃蜂"(R-4360)。前者在1939年7月1日定型,開始時功率為1230kW, 共發展出5個系列幾十個改型,最后功率達到2088kW,用于大量的軍民用飛機和直升機。單單為P-47戰斗機就生產了24000臺R-2800發動機,其中P-47 J的最大速度達805km/h。雖然有爭議,但據說這是第二次世界大戰中飛得最快的戰斗機。這種發動機在航空史上占有特殊的地位。在航空博物館或航空展覽會上,R-2800總是放置在中央位置。甚至有的航空史書上說,如果沒有R-2800發動機,在第二次世界大戰中盟國的取勝要困難得多。后者有四排28個汽缸,排量為71.5L,功率為2200~3000kW, 是世界上功率最大的活塞式發動機,用于一些大型轟炸機和運輸機。1941年,圍繞六臺R-4360發動機設計的B-36轟炸機是少數推進是飛機之一,但未投入使用。
萊特公司的R-2600和R-3350發動機也是很有名的雙排氣冷星型發動機。前者在1939推出,功率為1120kW,用于第一架載買票旅客飛越大西洋的波音公司"快帆"314型四發水上飛機以及一些較小的魚雷機、轟炸機和攻擊機。后者在1941年投入使用,開始時功率為2088kW,主要用于著名的B-29"空中堡壘"戰略轟炸機。R-3350在戰后發展出一種重要改型--渦輪組合發動機。發動機的排氣驅動三個沿周向均布的廢氣渦輪,每個渦輪在最大狀態下可發出150kW的功率。這樣,R-3350的功率提高到2535kW,耗油率低達0.23kg/(kW·h)。1946年9月,裝兩臺R-3350渦輪組合發動機的P2V1"海王星"飛機創造了18090km的空中不加油的飛行距離世界紀錄。液冷發動機與氣冷發動機之間的競爭在第二次世界大戰中仍在繼續。液冷發動機雖然有許多缺點,但它的迎風面積小,對高速戰斗機特別有利。而且,戰斗機的飛行高度高,受地面火力的威脅小,液冷發動機易損的弱點不突出。所以,它在許多戰斗機上得到應用。例如,美國在這次大戰中生產量最大的5種戰斗機中有4種采用液冷發動機。其中,值得一提的是英國羅-羅公司的梅林發動機。它在1935年11月在"颶風"戰斗機上首次飛行時,功率達到708kW;1936年在"噴火"戰斗機上飛行時,功率提高到783kW。
這兩種飛機都是第二次世界大戰期間有名的戰斗機,速度分別達到624km/h和750km/h。梅林發動機的功率在戰爭末期達到1238kW,甚至創造過1491kW的紀錄。美國派克公司按專利生產了梅林發動機,用于改裝P-51"野馬"戰斗機,使一種平常的飛機變成戰時最優秀的戰斗機。"野馬"戰斗機采用一種不常見的五葉螺旋槳,安裝梅林發動機后,最大速度達到760km/h,飛行高度為15000m。除具有當時最快的速度外,"野馬"戰斗機的另一個突出的優點是有驚人的遠航能力,它可以把盟軍的轟炸機一直護送到柏林。到戰爭結束時,"野馬"戰斗機在空戰中共擊落敵機4950架,居歐洲戰場的首位。而在遠東和太平洋戰場上,則是由于裝備了氣冷發動機的F6F"地獄貓"戰斗機的參戰,才結束了日本"零"式戰斗機的霸主地位。航空史學界把"野馬"飛機看作螺旋槳戰斗機的頂峰之作。
在第二次世界大戰開始之后和戰后的最主要的技術進展有直接注油、渦輪組合發動機和低壓點火。
在兩次世界大戰的推動下,發動機的性能提高很快,單機功率從不到10 kW增加到2500 kW左右,功率重量比從0.11 kW/daN 提高到1.5 kW/daN左右,升功率從每升排量幾千瓦增加到四五十千瓦,耗油率從約0.50 kg/(kW·h)降低到0.23~0.27 kg/(kW·h)。翻修壽命從幾十小時延長到2000~3000h。到第二次世界大戰結束時,活塞式發動機已經發展得相當成熟,以它為動力的螺旋槳飛機的飛行速度從16km/h提高到近800 km/h,飛行高度達到15000 m。可以說,活塞式發動機已經達到其發展的頂峰。
噴氣時代的活塞式發動機
在第二次世界大戰結束后,由于渦輪噴氣發動機的發明而開創了噴氣時代,活塞式發動機逐步退出主要航空領域,但功率小于370 kW的水平對缸活塞式發動機發動機仍廣泛應用在輕型低速飛機和直升機上,如行政機、農林機、勘探機、體育運動機、私人飛機和各種無人機,旋轉活塞發動機在無人機上嶄露頭角,而且美國NASA還正在發展用航空煤油的新型二沖程柴油機供下一代小型通用飛機使用。
美國NASA已經實施了一項通用航空推進計劃,為未來安全舒適、操作簡便和價格低廉的通用輕型飛機提供動力技術。這種輕型飛機大致是4~6座的,飛行速度在365 km/h左右。一個方案是用渦輪風扇發動機,用它的飛機稍大,有6個座位,速度偏高。另一個方案是用狄塞爾循環活塞式發動機,用它的飛機有4個座位,速度偏低。對發動機的要求為: 功率為150 kW; 耗油率0.22 kg/(kW·h); 滿足未來的排放要求; 制造和維修成本降低一半。到2000年,該計劃已經進行了500h以上的發動機地面試驗,功率達到130 kW,耗油率0.23 kg/(kW·h)。
2、燃氣渦輪發動機時期
第二個時期從第二次世界大戰結束至今。60年來,航空燃氣渦輪發動機取代了活塞式發動機,開創了噴氣時代,居航空動力的主導地位。在技術發展的推動下(見表1),渦輪噴氣發動機、渦輪風扇發動機、渦輪螺旋槳發動機、槳扇發動機和渦輪軸發動機在不同時期在不同的飛行領域內發揮著各自的作用,使航空器性能跨上一個又一個新的臺階。
渦噴/渦扇發動機
英國的惠特爾和德國的奧海因分別在1937年7月14日和1937年9月研制成功離心式渦輪噴氣發動機WU和HeS3B。前者推力為530daN,但1941年5月15日首次試飛的格羅斯特公司E28/39飛機裝的是其改進型W1B,推力為540daN,推重比2.20。后者推力為490daN,推重比1.38,于1939年8月27日率先裝在亨克爾公司的He-178飛機上試飛成功。這是世界上第一架試飛成功的噴氣式飛機,開創了噴氣推進新時代和航空事業的新紀元。
世界上第一臺實用的渦輪噴氣發動機是德國的尤莫-004,1940年10月開始臺架試車,1941年12月推力達到980daN,1942年7月18日裝在梅塞施米特Me-262飛機上試飛成功。自1944年9月至1945年5月,Me-262共擊落盟軍飛機613架,自己損失200架(包括非戰斗損失)。英國的第一種實用渦輪噴氣發動機是1943年4月羅·羅公司推出的威蘭德,推力為755daN,推重比2.0。該發動機當年投入生產后即裝備"流星"戰斗機,于1944年5月交給英國空軍使用。該機曾在英吉利海峽上空成功地攔截了德國的V-1導彈。
戰后,美、蘇、法通過買專利,或借助從德國取得的資料和人員,陸續發展了本國第一代渦輪噴氣發動機。其中,美國通用電氣公司的J47軸流式渦噴發動機和蘇聯克里莫夫設計局的RD-45離心式渦噴發動機的推力都在2650daN左右,推重比為2~3,它們分別在1949年和1948年裝在F-86和米格-15戰斗機上服役。這兩種飛機在朝鮮戰爭期間展開了你死我活的空戰。 20世紀50年代初,加力燃燒室的采用使發動機在短時間內能夠大幅度提高推力,為飛機突破聲障提供足夠的推力。典型的發動機有美國的J57和蘇聯的RD-9B,它們的加力推力分別為7000daN和3250daN,推重比各為3.5和4.5。它們分別裝在超聲速的單發F-100和雙發米格-19戰斗機上。
在50年代末和60年代初,各國研制了適合M2以上飛機的一批渦噴發動機,如J79、J75、埃汶、奧林帕斯、阿塔9C、R-11和R-13,推重比已達5~6。在60年代中期還發展出用于M3一級飛機的J58和R-31渦噴發動機。到70年代初,用于"協和"超聲速客機的奧林帕斯593渦噴發動機定型,最大推力達到17000daN。從此再沒有重要的渦噴發動機問世。
渦扇發動機的發展源于第二次世界大戰。世界上第一臺運轉的渦輪風扇發動機是德國戴姆勒-奔馳研制的DB670(或109-007),于1943年4月在實驗臺上達到840千克推力,但因技術困難及戰爭原因沒能獲得進一步發展。世界上第一種批量生產的渦扇發動機是1959年定型的英國康維,推力為5730daN,用于VC-10、DC-8和波音707客機。涵道比有0.3和0.6兩種,耗油率比同時期的渦噴發動機低10%~20%。1960年,美國在JT3C渦噴發動機的基礎上改型研制成功JT3D渦扇發動機,推力超過7700daN,涵道比1.4,用于波音707和DC-8客機以及軍用運輸機。
以后,渦扇發動機向低涵道比的軍用加力發動機和高涵道比的民用發動機的兩個方向發展。在低涵道比軍用加力渦扇發動機方面,20世紀60年代,英、美在民用渦扇發動機的基礎上研制出斯貝-MK202和TF30,分別用于英國購買的"鬼怪"F-4M/K戰斗機和美國的F111(后又用于F-14戰斗機)。它們的推重比與同時期的渦噴發動機差不多,但中間耗油率低,使飛機航程大大增加。在70~80年代,各國研制出推重比8一級的渦扇發動機,如美國的F!00、F404、F110,西歐三國的RB199,前蘇聯的RD-33和AL-31F。它們裝備目前在一線的第三戰斗機,如F-15、F-16、F-18、"狂風"、米格-29和蘇-27。目前,推重比10一級的渦扇發動機已研制成功,即將投入服役。它們包括美國的F-22/F119、西歐的EFA2000/EJ200和法國的"陣風"/M88。其中,F-22/F119具有第-四-代戰斗機代表性特征--超聲速巡航、短距起落、超機動性和隱身能力。超聲速垂直起飛短距著陸的JSF動力裝置F136正在研制之中,預計將于2010~2012年投入服役。
自20世紀70年代第一代推力在20000daN以上的高涵道比(4~6)渦扇發動機投入使用以來,開創了大型寬體客機的新時代。后來,又發展出推力小于20000daN的不同推力級的高涵道比渦扇發動機,廣泛用于各種干線和支線客機。10000~15000daN推力級的CFM56系列已生產13000多臺,并創造了機上壽命超過30000h的記錄。民用渦扇發動機依然投入使用以來,已使巡航耗油率降低一半,噪聲下降20dB, CO、UHC、NOX分別減少70%、90%、45%。90年代中期裝備波音777投入使用的第二代高涵道比(6~9)渦扇發動機的推力超過35000daN。其中,通用電氣公司GE90-115B在2003年2月創造了56900daN的發動機推力世界紀錄。目前,普·惠公司正在研制新一代渦扇發動機PW8000,這種齒輪傳動渦扇發動機,推力為11 000~16 000daN,涵道比11,耗油率下降9%。
渦槳/渦軸發動機
第一臺渦輪螺旋槳發動機為匈牙利于1937年設計、1940年試運轉的 Jendrassik Cs-1。該機原計劃用于本國Varga RMI-1 X/H型雙引擎偵察/轟炸機但該機項目被取消。1942年,英國開始研制本國第一臺渦槳發動機羅爾斯-羅伊斯 RB.50 Trent。該機于1944年6月首次運轉,經過633小時試車后于1945年9月20日安裝在一臺格羅斯特“流星”戰斗機上,并做了298小時飛行實驗。以后,英國、美國和前蘇聯陸續研制出多種渦槳發動機,如達特、T56、AI-20和AI-24。這些渦槳發動機的耗油率低,起飛推力大,裝備了一些重要的運輸機和轟炸機。美國在1956年服役的渦槳發動機T56/501,裝于C-130運輸機、P3-C偵察機和E-2C預警機。它的功率范圍為2580~4414 kW ,有多個軍民用系列,已生產了17000多臺,出口到50多個國家和地區,是世界上生產數量最多的渦槳發動機之一,至今還在生產。前蘇聯的HK-12M的最達功率達11000kW,用于圖-95"熊"式轟炸機、安-22軍用運輸機和圖-114民用運輸機。終因螺旋槳在吸收功率、尺寸和飛行速度方面的限制,在大型飛機上渦輪螺旋槳發動機逐步被渦輪風扇發動機所取代,但在中小型運輸機和通用飛機上仍有一席之地。其中加拿大普·惠公司的PT6A發動機是典型代表,40年來,這個功率范圍為350~1100kW的發動機系列已發展出30多個改型,用于144個國家的近百種飛機,共生產了30000多臺。美國在90年代在T56和T406的基礎上研制出新一代高速支線飛機用的AE2100是當前最先進的渦槳發動機,功率范圍為2983~5966 kW,其起飛耗油率特低,為0.249 kg/(kW·h)。
最近西歐四國決定為歐洲中型軍用運輸機A400M研制TP400渦槳發動機。該發動機以法國的M88的核心機為基礎,功率為7460kW,計劃于2008年定型。
在20世紀80年代后期,掀起了一陣性能上介于渦槳發動機和渦扇發動機之間的槳扇發動機熱。一些著名的發動機公司都在不同程度上進行了預計和試驗,其中通用電氣公司的無涵道風扇(UDF)GE36曾進行了飛行試驗。由于種種原因,只有俄羅斯和烏克蘭的安-70/D-27進入工程研制并計劃批生產裝備部隊。但因飛機技術老化、發動機噪聲不符合歐洲標準和試驗中發生的問題較多,最近俄烏雙方作出放棄裝備該機的決定。
從1950年法國透博梅卡公司研制出206 kW的阿都斯特Ⅰ型渦軸發動機并裝備美國的S52-5直升機上首飛成功以后,渦輪軸發動機在直升機領域逐步取代活塞式發動機而成為最主要的動力形式。半個世紀以來,渦軸發動機已成功低發展出四代,功重比已從2kW/daN提高到6.8~7.1 kW/daN。第三代渦軸發動機是20世紀70年代設計,80年代投產的產品。主要代表機型有馬基拉、T700-GE-701A和TV3-117VM,裝備AS322"超美洲豹"、UH-60A、AH-64A、米-24和卡-52。第-四-代渦軸發動機是20世紀80年代末90年代初開始研制的新一代發動機,代表機型有英、法聯合研制的RTM322、美國的T800-LHT-800、德法英聯合研制的MTR390和俄羅斯的TVD1500,用于NH-90、EH-101、WAH-64、RAH-66"科曼奇"、PAH-2/HAP/HAC"虎"和?html>
/> -->產型發動機的功率限制在2240kW 。為滿足未來運輸旋翼機(FTR)的動力需求,2004財年將開始一個利用IHPTET第二階段和第三階段技術的發動機驗證計劃。這種發動機的功率為7460kW,其工程和制造研制(EMD)將于2008到2010財年進行。預計FTR與現在的重型運輸直升機相比,可使航程增加三倍,或載荷增加一倍。
航空燃氣渦輪發動機問世以后的60年來在技術上取得的重大進步可用下列數字表明:
服役的戰斗機發動機推重比從2提高到7~9,已經定型并即將投入使用的達9~10。民用大涵道比渦扇發動機的最大推力已超過50000 daN,巡航耗油率從50年代渦噴發動機1.0 kg/(daN·h)下降到0.55 kg/(daN·h), 噪聲已下降20dB,CO、UHC和NOx分別下降70%、90%和45%。
服役的直升機用渦軸發動機的功重比從2kW/daN提高到4.6~6.1 kW/daN,已經定型并即將投入使用的達6.8~7.1 kW/daN。
發動機可靠性和耐久性倍增,軍用發動機空中停車率一般為0.2~0.4/1 000發動機飛行小時,民用發動機為0.002~0.02/1 000發動機飛行小時。戰斗機發動機整機定型要求通過4300~6000TAC循環試驗,相當于平時使用10多年,熱端零件壽命達到2 000h;民用發動機熱端部件壽命,為7000~10000 h,整機的機上壽命達到15000~20 000 h,也相當使用10年左右。
綜述
總之,60年來航空渦輪發動機已經發展得相當成熟,為各種航空器的發展作出了重要貢獻,其中包M3一級的戰斗/偵察機,具有超聲速巡航、隱身、短距起落和超機動能力的戰斗機、亞聲速垂直起落戰斗機、滿足180min 雙發干線客機延長航程(ETOPS)要求的寬體客機、有效載重大20t的巨型直升機和速度超過600km/h的傾轉旋翼機。同時,還為各種航空改型輕型地面燃氣輪機打下基矗
【飛機發動機】相關文章:
飛機發動機損傷圖像的分割處理04-28
世界商用飛機發動機的發展與展望04-27
飛機發動機狀態檢測系統設計04-30
ARJ21飛機發動機技術分析04-27
大有不同探討大型飛機的發動機05-01
飛機發動機用梯度封嚴涂層的研究04-28
基于PNN的飛機發動機故障診斷研究04-27
渦輪風扇發動機在飛機紅外隱身上的優勢04-26
飛機發動機振動檢查儀的設計05-03
飛機發動機燃油流量試驗方法研究05-02