- 相關推薦
500 kV惠汕輸電系統內過電壓的研究結果和分析
500 kV惠汕輸電系統內過電壓的研究結果和分析摘 要 惠汕500 kV輸電線路長268 km,由于取消出線斷路器的合閘電阻,使統計操作過電壓和線路閃絡率偏高。為降低統計操作過電壓和線路閃絡率,設計中在線路中間裝設一組線路型444 kV MOA(氧化鋅避雷器),屬國內首創;為限制潛供電流,線路兩側各裝置一組120 Mvar高抗,但投產前有一組高抗因鐵心接地返回制造廠修理。在只有一組高抗,內過電壓和潛供電流比較嚴重條件下,為確;萆蔷按時安全投產,通過反復研究和分析,提出安全措施,使惠汕線順利投產,并為惠汕線和長線路編制運行規程提供了依據。
1 研究過程及主要結論
1.1 設計階段的研究結論
1994年,當惠汕輸電工程進入初步設計階段時,廣東省電力設計研究院(下簡稱“設計院”)與原電力部電力科學研究院(下簡稱“電科院”)共同開展對該工程內過電壓的計算研究。該工程踏勘的線路長293 km,研究的關鍵問題是:在線路兩側出線斷路器取消合閘電阻的條件下,如何采取措施把統計操作過電壓和線路閃絡率限制在規程和規定的范圍內,確保輸變電設備的安全。由于惠汕線是國內當前不裝合閘電阻的最長線路,且需要在線路中間裝設一組線路型氧化鋅避雷器(屬國內首創),因此,本工程的內過電壓研究比短線路復雜得多。如果采用常規的計算模型,即線路參數是固定不變的,則統計操作過電壓和線路閃絡率均超過規程的規定值,因此本研究采用復雜的J.MAITI模型。這個模型按桿塔的實際尺寸、對地平均距離以及土壤電阻率來進行計算,并考慮線路參數隨頻率的變化而改變,即顧及線路的高頻特性。這個精確模型計算所需時間較長,每種運行方式需要十幾分鐘(常規模型幾秒鐘即可計算一種方式)。精確模型的計算結果較之常規模型可降低統計操作過電壓10%左右,也相應降低線路閃絡率,也就是說,采用精確模型在運行上減少10%的裕度。計算結果見電科院和設計院于1994年11月編制的《惠州—汕頭500 kV輸電系統內過電壓及絕緣配合研究》,該研究的主要結論為:
a)惠汕線兩側需各裝1臺120 Mvar高壓并聯電抗器(以下簡稱“高抗”),中性點小電抗均取值750 Ω。
b)惠汕線地線材料采用GJ-70型鋼絞線是可行的。
c)在線路不采用快速三相重合閘條件下,惠汕線出線斷路器可以取消并聯合閘電阻。由于取消合閘電阻后線路閃絡率仍較高,因此,必須在線路揭陽側加裝一組444 kV氧化鋅避雷器(MOA)。在三組444 kV MOA投運后,合空線過電壓與線路閃絡率均能滿足要求(兩組母線420 kV MOA在合空線時也投入運行)。
d)在操作過電壓下,MOA的最大能耗為允許值的23%;在故障操作過電壓下,MOA的最大能耗為允許值的19.6%。因此,把MOA作為操作過電壓的主保護,MOA仍有較大的裕度。
e)合汕頭空載變壓器時,應投入該主變低壓側一組低壓電抗器(45 Mvar),以防止主變發生諧振過電壓。
1.2 投產前的補充研究
500 kV惠汕輸變電工程于1997年12月18日投產。投產前設備測試時發現汕頭側高壓并聯電抗器鐵心接地,該高抗必須返回廠家修理,不能與工程同時投產。汕頭側高抗對惠汕工程安全投產和運行調度有較大影響,且惠汕線實際長度為268 km(不是1994年在圖紙上選線的293 km),因此,500 kV惠汕輸變電工程啟動委員會要求對該工程內過電壓進行補充研究。
1997年12月上旬,有關人員對線路的參數進行實測,啟動委員會又要求按實測參數再進行一次過電壓研究,以確保啟動的安全。這次研究,我們將母線型避雷器、線路型避雷器、線路中間的避雷器的實際伏安特性,線路的實際長度,汕頭側高抗無法同步投產等實際因素都考慮了進去,采用實測參數進行研究,并采用實際桿塔尺寸按高頻特
[1] [2] [3]
【500 kV惠汕輸電系統內過電壓的研究結果和分析】相關文章:
±500kV直流輸電工程環境影響評價04-26
淺談110 kV輸電線路工程基礎施論文04-30
環流循環除塵系統分離柱內旋風流場分析04-30
空調系統工作不良的原因分析和檢修04-26
價值取向的系統內函05-02
電推進系統壓力調節單元的建模和分析04-27
航天任務飛行控制分析系統的設計和應用05-01
課題預期研究結果04-27
PLC控制系統常見故障分析和維護05-02