【精選】單片機實習報告4篇
在經濟飛速發展的今天,報告與我們的生活緊密相連,寫報告的時候要注意內容的完整。那么報告應該怎么寫才合適呢?下面是小編收集整理的單片機實習報告4篇,供大家參考借鑒,希望可以幫助到有需要的朋友。
單片機實習報告 篇1
這次實習我們使用控制電路的單片機是AT89S51型號的。通過它實現對八盞雙色燈發光二極管的控制P0和《單片機實習報告總結》正文開始》 這次實習我們使用控制電路的單片機是AT89S51型號的。通過它實現對八盞雙色燈發光二極管的控制P0和P2口控制四盞燈。在AT89S51的9引腳接復位電路,對電路實現復位控制。在電路中接入74S164譯碼器和共陰極數碼管,通過AT89S51的P3口數據的輸入對共陰極數碼管的控制。同時也可實現雙色發光的二極管與共陰極數碼管的共同作用。在AT89S51的P3.2口接上中斷控制電路,P3.5口接入蜂鳴器,使電路實現中斷作用,也使電路便于檢測。盡量朝“單片”方向設計硬件系統。系統器件越多,器件之間相互干擾也越強,功耗也增大,也不可避免地降低了系統的穩定性。系統中的相關器件要盡可能做到性能匹配。如選用CMOS芯片單片機構成低功耗系統時,系統中所有芯片都應盡可能選擇低功耗產品。
硬件電路設計:
1)確保硬件結構和應用軟件方案相結合。硬件結構與軟件方案會相互影響,軟件能實現的功能盡可能由軟件實現,以簡化硬件結構。必須注意,由軟件實現的硬件功能,一般響應時間比硬件實現長,且占用CPU時間;
2)可靠性及抗干擾設計是硬件設計必不可少的一部分,它包括芯片、器件選擇、去耦濾波、印刷電路板的合理布線、各元器相互隔離等;
3)盡量朝“MCS-51單片”方向設計硬件系統。系統器件越多,器件之間相互干擾也越強,所消耗功耗也增大,也不可避免地降低了系統的穩定性;
4)系統中的相關器件要盡可能做到性能匹配。如選用CMOS芯片單片機構成低功耗系統時,系統中所有芯片都應盡可能選擇低功耗產品。
1.1 單片機型號及特性
單片機型號是 AT89S51。特性是:⑴8031 CPU與MCS-51⑵兼容 4K字節可編程FLASH存儲器(壽命:1000寫/擦循環) ⑶全靜態工作:0Hz-24KHz ⑷三級程序存儲器保密鎖定 ⑸128*8位內部RAM ⑹32條可編程I/O線⑺兩個16位定時器/計數器 ⑻6個中斷源⑼可編程串行通道⑽低功耗的閑置和掉電模式⑾片內振蕩器和時鐘電路
1.2 晶振電路
單片機晶振的兩個電容的作用 這兩個電容叫晶振的負載電容,分別接在晶振的兩個腳上和對地的電容,一般在幾十皮發。它會影響到晶振的諧振頻率和輸出幅度,晶振的負載電容=+Cic+△C式中Cd,Cg為分別接在晶振的兩個腳上和對地的電容,Cic(集成電路內部電容)+△C(PCB上電容)經驗值為3至5pf。 各種邏輯芯片的晶振引腳可以等效為電容三點式振蕩器。晶振引腳的內部通常是一個反相器, 或者是奇數個反相器串聯。在晶振輸出引腳 XO 和晶振輸入引腳 XI 之間用一個電阻連接, 對于 CMOS 芯片通常是數 M 到數十M 歐之間。 很多芯片的引腳內部已經包含了這個電阻, 引腳外部就不用接了。這個電阻是為了使反相器在振蕩初始時處與線性狀態, 反相器就如同一個有很大增益的放大器, 以便于起振。 石英晶體也連接在晶振引腳的輸入和輸出之間, 等效為一個并聯諧振回路, 振蕩頻率應該是石英晶體的并聯諧振頻率。 晶體旁邊的'兩個電容接地, 實際上就是電容三點式電路的分壓電容, 接地點就是分壓點。 以接地點即分壓點為參考點, 振蕩引腳的輸入和輸出是反相的, 但從并聯諧振回路即石英晶體兩端來看, 形成一個正反饋以保證電路持續振蕩。 在芯片設計時, 這兩個電容就已經形成了, 一般是兩個的容量相等, 容量大小依工藝和版圖而不同, 但終歸是比較小, 不一定適合很寬的頻率范圍。 外接時大約是數 PF 到數十 PF, 依頻率和石英晶體的特性而定。 需要注意的是: 這兩個電容串聯的值是并聯在諧振回路上的, 會影響振蕩頻率。 當兩個電容量相等時, 反饋系數是 0.5, 一般是可以滿足振蕩條件的, 但如果不易起振或振蕩不穩定可以減小輸入端對地電容量, 而增加輸出端的值以提高反饋量。
電路如圖所示
1.3 復位電路
單片機在開機時或在工作中因干擾而使程序失控,或工作中程序處于某種死循環狀態等情況下都需要復位。復位作用是使CPU以及其他功能部件,如串行口,中斷都恢復到一個確定初始狀態,并從這個狀態開始工作。
復位電路有兩種:上電、按鈕復位,考慮到各部件影響,采用按鈕復位,當電阻給電容充電,電容的電壓為高電平,當按下按鈕時芯片復位腳近似低電平,于是芯片復位。
單片機實習報告 篇2
一 實習目的
1. 通過對單片機小系統的設計、焊接、裝配,掌握電路原理圖及電子線路的基本焊接裝配工藝、規范及注意事項;
2. 通過對系統板的測試,了解系統板的工作原理及性能,掌握元器件及系統故障的排除方法;
3. 掌握程序編制及調試方法,完成系統初始化、存儲器操作、端口操作、鍵盤顯示等程序的編制及調試(匯編語言、C語言均可);
4. 通過單片機系統的組裝,調試以及程序編制、調試及運行,與理論及實驗的有機結合和指導教師的補充介紹,使學生掌握控制系統的工作原理、開發方法和操作方法。
5. 培養學生解決實際問題的能力,提高對理論知識的感性認識。
二 實習意義
通過本實習不但可以掌握單片機軟、硬件的綜合調試方法,而且可以熟練掌握電路原理圖,激發對單片機智能性的探索精神,提高學生的綜合素質,培養學生應用單片機實現對工業控制系統的設計、開發與調試的能力。在制作學習過程中,不但可以掌握軟、硬件的綜合調試方法,而且可以使學生對單片機智能性產生強烈的欲望。達到最大限度地掌握微機應用技術,軟件及接口設計和數據采集與處理的技能,培養電綜合實踐素質的目的。
三 系統基本組成及工作原理
1 系統基本組成
系統以單片機STC89C52作為控制核心,各部分基本組成框圖如圖1所示。
流水燈部分由單片機、鍵盤模塊等組成;
四位數碼顯示,編程實現30秒倒計時部分由單片機、鍵盤模塊、液晶顯示模塊等組成;
按鍵功能部分通過按鍵控制流水燈部分、四位數碼顯示部分;
電子鐘部分由單片機、鍵盤模塊、液晶顯示模塊等組成;
使用功能鍵實現相應的功能組合部分通過流水燈部分、30秒倒計時部分實現;
模數轉換部分由單片機、ADC0809轉換模塊、鍵盤模塊、液晶顯示模塊等組成。
2 系統工作原理
本設計采用STC89C52RC單片機作為本系統的控制模塊。單片機可把由ADC0809及單片機中的數據利用軟件來進行處理,從而把數據傳輸到顯示模塊,實現阻值大小的顯示。以數碼管顯示為顯示模塊,把單片機傳來的.數據顯示出來。在顯示電路中,主要靠按鍵來實現各種顯示要求的選擇與切換。
對于模數轉換部分,單片機89C51通過P0口的I/O線向ADC0809發送鎖存地址以及復位、啟動轉換等信號,并查詢轉換狀態。 ADC0809啟動轉換后,將0-8個通道一次輸入的電壓信號轉換成相應的數字量,供89c51讀取使用,并且將EOC置1供單片機查詢轉換狀態。而滑動變阻器負責將阻值信號轉換成電壓信號,再送到ADC0809的八個通道。當單片機查詢到轉換結束后依次讀取數據并按照現實的需要進行二進制轉BCD碼等處理最后控制顯示電路顯示出數字。 其實現方式是:ADC0809轉換來自3通道的阻值變化信號。80c51的P2口與ADC0809的輸出相連用于讀取轉換結果,同時P0.0-P0.6作控制總線,向ADC0809發送鎖存、啟動等控制信息,并查詢EOC狀態。ALE經分頻后給ADC0809提供時鐘信號。P3.0和P3.1口用于向顯示電路輸出段碼,P3.2-P3.7用于數碼管的位選。
四 系統硬件設計
結合本設計的要求和技術指標,通過對系統大致程序量的估計和系統工作的估計,考慮價格因素。選定AT89C51單片機作為系統的主要控制芯片,8位模擬轉換器ADC0809進行阻值轉換。 逐次比較法A/D轉換器是目前種類最多、應用最廣的A/D轉換器,其原理即“逐位比較”,其過程類似于用砝碼在天平上稱物體重量。它由N位寄存器、A/D轉換器、比較器和控制邏輯等部分組成,N位寄存器代表N位二進制碼。目前應用最廣的逐次比較法A/D轉換器有ADC0809。它是一種8路模擬輸入8位數字輸出的逐次比較法A/D轉換器件。其主要性能指標和特性如下:
分表率:8位
轉換時間:取決于芯片時鐘頻率,轉換一次時間位64個時鐘周期
單一電源:+5v
模擬輸入電壓范圍:單極性0-+5v;雙極性-5v-+5v
具有可控三態輸出鎖存器
啟動轉換控制位脈沖式,上升沿使內部所有寄存器清零,下降沿使A/D轉換開始。
通過以上性能比較,我們不難看出ADC0809滿足本設計的要求,所以本設計采用ADC0809作為A/D轉換器
1 按鍵電路設計
利用單片機的P1口擴展一個8位鍵盤。
2 晶振與復位電路設計
本設計采用的是上電復位的形式,如圖3.3所示,上電順進RST獲得高電平,隨著電容器C的充電,RST引腳上的高電平將逐漸下降,只要高電平能保持復位所需要的兩個機器周期以上時間,單片機就能實現復位操作。 晶振電路為單片機提供工作所需要的時鐘信號。震蕩頻率越高,系統時鐘頻率也越高,單片機運行的速度就越快。其電路如圖3.4所示。89C51的XTAL1和XTAL2兩個引腳跨接晶體振蕩器和微調電容C1、C2形成反饋電路,就構成了穩定的自激振蕩器,本設計的震蕩器頻率為12MHZ。
3 下載電路設計
4 流水燈模塊設計
5 模數轉換模塊設計
6 顯示電路設計
本設計采用六位數碼管。本系統采用共陽極動態掃描的方式連接。數碼管的段碼數據由89C51的P3.0-P3.1口送出,89C51的P3.2-P3.7輸出位選通信號,只有被選中的那位數碼管才會顯示段碼
7 整體電路設計
五 系統軟件設計
1主程序設計
主程序采用分支結構,以狀態號標識系統所處的狀態。在上電初始化后即進入狀態號的輪詢掃描,狀態號的值決定了分支程序的入口。其中分支程序分別為:AD轉換模塊(狀態號為0),數字模塊狀態號為1),倒計時模塊(狀態號為2),電子鐘模塊(狀態號為3),功能組合模塊(狀態號為4),流水燈模塊(狀態號為5)。
2 功能子程序設計
2.1 流水燈模塊
流水燈模塊利用單片機的P3口,通過給P3口的各位送低電平,相應的實現流水燈有規律的點亮。
2.2 30秒倒計時模塊
30秒倒計時模塊利用單片機的P3.0與P3.1口送相應的段控數據,P3.2-P3.7口送相應的位控數據。通過程序實現30秒倒計時。
2.3 數字加減模塊
利用數碼管實現數字顯示,通過加一鍵或者是減一鍵實現數字變量的加一或者減一,進而實現利用數碼管顯示加一鍵、減一鍵功能。
2.4 電子鐘模塊
利用數碼管實現時間顯示,通過加一鍵或者是減一鍵實現小時變量或者是分鐘變量的加一,從而實現調時功能。
2.5 模數轉換模塊
對于模數轉換部分,單片機89C51通過P0口的I/O線向ADC0809發送鎖存地址以及復位、啟動轉換等信號,并查詢轉換狀態。 ADC0809啟動轉換后,將0-8個通道一次輸入的電壓信號轉換成相應的數字量,供89c51讀取使用,并且將EOC置1供單片機查詢轉換狀態。而滑動變阻器負責將阻值信號轉換成電壓信號,再送到ADC0809的八個通道。
當單片機查詢到轉換結束后依次讀取數據并按照現實的需要進行二進制轉BCD碼等處理最后控制顯示電路顯示出數字。 其實現方式是:ADC0809轉換來自3通道的阻值變化信號。80c51的P2口與ADC0809的輸出相連用于讀取轉換結果,同時P0.0-P0.6作控制總線,向ADC0809發送鎖存、啟動等控制信息,并查詢EOC狀態。ALE經分頻后給ADC0809提供時鐘信號。P3.0和P3.1口用于向顯示電路輸出段碼,P3.2-P3.7用于數碼管的位選。
六 實習總結、體會
本次單片機實習我們一共完成了個模塊的程序設計,包括:led顯示模塊、數碼管顯示模塊和鍵盤模塊。分別實現了流水燈的循環點亮控制、數碼管的靜態和動態計數顯示,還有矩陣鍵盤按鍵控制數碼管顯示的程序設計。然后我們分別用protues系統仿真軟件對各個模塊進行了模擬仿真,用keil軟件編制了匯編語言程序,驗證了我們所設計的程序。 這次實習還使我理解了編寫程序的一些技巧。單片機應用系統一般由包含多個模塊的主程序和由各種子程序組成。每一模塊都要完成一個明確的任務,實現某個具體的功能,如計算、接受、發送、延時、顯示等。采用模塊化程序設計方法,就是將這些具體功能程序進行獨立設計和分別調試,最后將這些模塊程序裝配成整體程序并進行聯合調試。
模塊化程序設計方法的優點:一個模塊可以為多個程序所共享;單個功能明確的程序模塊的設計和調試比較方便,容易完成;利用已經編好的成熟模塊,將大大縮短開發程序的時間,降低開發成本。采用循環結構和子程序結構可以使程序的容量大大減少,提高程序的效率,節省內存。對于多重循環,要注意各重循環的初值和循環結束的條件,避免出現程序無休止循環的“死循環”現象; 通過這次的實習我發現,只有理論水平提高了,才能夠將課本知識與實踐相結合,理論知識服務于教學實踐,以增強自己的動手能力。這次實習十分有意義,這次實習我們知道了理論和實踐的距離,也知道了理論和實踐相結合的重要性。
回顧起此次課程設計,感覺受益匪淺,從拿到題目到完成整個編程,從理論到實踐,學到很多很多的課堂理論中沒學到過的東西,不僅對鍵盤的識別技術這一章節的知識點有了深刻的認識,而且對這學期開設的單片機這門課程有了更全面的了解,尤其是在學習使用proteus軟件片編程和仿真時收獲良多。通過這次單片機課程設計,還使我懂得了實踐的重要性。同時在程序調試的過程中提高自己的發現問題、解決問題、實際動手和獨立思考的能力。 這次課程設計能順利的完成,除了我們的努力外,當然也離不開指導老師申老師的辛勤指導,致使我在設計的過程中學到了很多實用性的知識。同時,對給過我幫助的所有同學和各位指導老師表示忠心的感謝!
單片機實習報告 篇3
這次實習我們使用控制電路的單片機是at89s51型號的,單片機實習報告總結。通過它實現對八盞雙色燈發光二極管的控制p0和p2口控制四盞燈。在at89s51的9引腳接復位電路,對電路實現復位控制。在電路中接入74s164譯碼器和共陰極數碼管,通過at89s51的p3口數據的輸入對共陰極數碼管的控制。
同時也可實現雙色發光的二極管與共陰極數碼管的共同作用。在at89s51的p3.2口接上中斷控制電路,p3.5口接入蜂鳴器,使電路實現中斷作用,也使電路便于檢測。盡量朝“單片”方向設計硬件系統。系統器件越多,器件之間相互干擾也越強,功耗也增大,也不可避免地降低了系統的穩定性。系統中的相關器件要盡可能做到性能匹配。如選用cmos芯片單片機構成低功耗系統時,系統中所有芯片都應盡可能選擇低功耗產品。
硬件電路設計:
1)確保硬件結構和應用軟件方案相結合。硬件結構與軟件方案會相互影響,軟件能實現的功能盡可能由軟件實現,以簡化硬件結構。必須注意,由軟件實現的硬件功能,一般響應時間比硬件實現長,且占用cpu時間;
2)可靠性及抗干擾設計是硬件設計必不可少的一部分,它包括芯片、器件選擇、去耦濾波、印刷電路板的合理布線、各元器相互隔離等;
3)盡量朝“mcs-51單片”方向設計硬件系統。系統器件越多,器件之間相互干擾也越強,所消耗功耗也增大,也不可避免地降低了系統的穩定性;
4)系統中的相關器件要盡可能做到性能匹配。如選用cmos芯片單片機構成低功耗系統時,系統中所有芯片都應盡可能選擇低功耗產品。
1.1 單片機型號及特性
單片機型號是 at89s51。特性是:⑴8031 cpu與mcs-51⑵兼容 4k字節可編程flash存儲器(壽命:1000寫/擦循環) ⑶全靜態工作:0hz-24khz ⑷三級程序存儲器保密鎖定 ⑸128*8位內部ram ⑹32條可編程i/o線⑺兩個16位定時器/計數器 ⑻6個中斷源⑼可編程串行通道⑽低功耗的閑置和掉電模式⑾片內振蕩器和時鐘電路
1.2 晶振電路
單片機晶振的兩個電容的作用 這兩個電容叫晶振的負載電容,分別接在晶振的兩個腳上和對地的電容,一般在幾十皮發。它會影響到晶振的諧振頻率和輸出幅度,晶振的負載電容=[(cd*cg)/(cd+cg)]+cic+△c式中cd,cg為分別接在晶振的兩個腳上和對地的電容,cic(集成電路內部電容)+△c(pcb上電容)經驗值為3至5pf。 各種邏輯芯片的晶振引腳可以等效為電容三點式振蕩器。晶振引腳的內部通常是一個反相器, 或者是奇數個反相器串聯。在晶振輸出引腳 xo 和晶振輸入引腳 xi 之間用一個電阻連接, 對于 cmos 芯片通常是數 m 到數十m 歐之間. 很多芯片的引腳內部已經包含了這個電阻, 引腳外部就不用接了。
這個電阻是為了使反相器在振蕩初始時處與線性狀態, 反相器就如同一個有很大增益的放大器, 以便于起振. 石英晶體也連接在晶振引腳的輸入和輸出之間, 等效為一個并聯諧振回路, 振蕩頻率應該是石英晶體的.并聯諧振頻率. 晶體旁邊的兩個電容接地, 實際上就是電容三點式電路的分壓電容, 接地點就是分壓點. 以接地點即分壓點為參考點, 振蕩引腳的輸入和輸出是反相的, 但從并聯諧振回路即石英晶體兩端來看, 形成一個正反饋以保證電路持續振蕩. 在芯片設計時, 這兩個電容就已經形成了, 一般是兩個的容量相等, 容量大小依工藝和版圖而不同, 但終歸是比較小, 不一定適合很寬的頻率范圍. 外接時大約是數 pf 到數十 pf, 依頻率和石英晶體的特性而定. 需要注意的是: 這兩個電容串聯的值是并聯在諧振回路上的, 會影響振蕩頻率. 當兩個電容量相等時, 反饋系數是 0.5, 一般是可以滿足振蕩條件的, 但如果不易起振或振蕩不穩定可以減小輸入端對地電容量, 而增加輸出端的值以提高反饋量。
單片機實習報告 篇4
這次實習我們使用控制電路的單片機是AT89S51型號的,單片機實習報告總結。通過它實現對八盞雙色燈發光二極管的控制P0和P2口控制四盞燈。在AT89S51的9引腳接復位電路,對電路實現復位控制。在電路中接入74S164譯碼器和共陰極數碼管,通過AT89S51的P3口數據的輸入對共陰極數碼管的控制。同時也可實現雙色發光的二極管與共陰極數碼管的共同作用。在AT89S51的P3.2口接上中斷控制電路,P3.5口接入蜂鳴器,使電路實現中斷作用,也使電路便于檢測。盡量朝“單片”方向設計硬件系統。系統器件越多,器件之間相互干擾也越強,功耗也增大,也不可避免地降低了系統的穩定性。系統中的相關器件要盡可能做到性能匹配。如選用CMOS芯片單片機構成低功耗系統時,系統中所有芯片都應盡可能選擇低功耗產品。
硬件電路設計:
1)確保硬件結構和應用軟件方案相結合。硬件結構與軟件方案會相互影響,軟件能實現的功能盡可能由軟件實現,以簡化硬件結構。必須注意,由軟件實現的硬件功能,一般響應時間比硬件實現長,且占用CPU時間;
2)可靠性及抗干擾設計是硬件設計必不可少的一部分,它包括芯片、器件選擇、去耦濾波、印刷電路板的合理布線、各元器相互隔離等;
3)盡量朝“MCS-51單片”方向設計硬件系統。系統器件越多,器件之間相互干擾也越強,所消耗功耗也增大,也不可避免地降低了系統的穩定性;
4)系統中的相關器件要盡可能做到性能匹配。如選用CMOS芯片單片機構成低功耗系統時,系統中所有芯片都應盡可能選擇低功耗產品。
1.1 單片機型號及特性
單片機型號是 AT89S51。特性是:⑴8031 CPU與MCS-51⑵兼容 4K字節可編程FLASH存儲器(壽命:1000寫/擦循環) ⑶全靜態工作:0Hz-24KHz ⑷三級程序存儲器保密鎖定 ⑸128*8位內部RAM ⑹32條可編程I/O線⑺兩個16位定時器/計數器 ⑻6個中斷源⑼可編程串行通道⑽低功耗的閑置和掉電模式⑾片內振蕩器和時鐘電路。
1.2 晶振電路
單片機晶振的兩個電容的.作用 這兩個電容叫晶振的負載電容,分別接在晶振的兩個腳上和對地的電容,一般在幾十皮發,實習總結《單片機實習報告總結》。它會影響到晶振的諧振頻率和輸出幅度,晶振的負載電容=[(Cd*Cg)/(Cd+Cg)]+Cic+△C式中Cd,Cg為分別接在晶振的兩個腳上和對地的電容,Cic(集成電路內部電容)+△C(PCB上電容)經驗值為3至5pf。 各種邏輯芯片的晶振引腳可以等效為電容三點式振蕩器。晶振引腳的內部通常是一個反相器, 或者是奇數個反相器串聯。在晶振輸出引腳 XO 和晶振輸入引腳 XI 之間用一個電阻連接, 對于 CMOS 芯片通常是數 M 到數十M 歐之間. 很多芯片的引腳內部已經包含了這個電阻, 引腳外部就不用接了。這個電阻是為了使反相器在振蕩初始時處與線性狀態, 反相器就如同一個有很大增益的放大器, 以便于起振. 石英晶體也連接在晶振引腳的輸入和輸出之間, 等效為一個并聯諧振回路, 振蕩頻率應該是石英晶體的并聯諧振頻率. 晶體旁邊的兩個電容接地, 實際上就是電容三點式電路的分壓電容, 接地點就是分壓點. 以接地點即分壓點為參考點, 振蕩引腳的輸入和輸出是反相的, 但從并聯諧振回路即石英晶體兩端來看, 形成一個正反饋以保證電路持續振蕩. 在芯片設計時, 這兩個電容就已經形成了, 一般是兩個的容量相等, 容量大小依工藝和版圖而不同, 但終歸是比較小, 不一定適合很寬的頻率范圍. 外接時大約是數 PF 到數十 PF, 依頻率和石英晶體的特性而定. 需要注意的是: 這兩個電容串聯的值是并聯在諧振回路上的, 會影響振蕩頻率. 當兩個電容量相等時, 反饋系數是 0.5, 一般是可以滿足振蕩條件的, 但如果不易起振或振蕩不穩定可以減小輸入端對地電容量, 而增加輸出端的值以提高反饋量。
1.3 復位電路
單片機在開機時或在工作中因干擾而使程序失控,或工作中程序處于某種死循環狀態等情況下都需要復位。復位作用是使CPU以及其他功能部件,如串行口,中斷都恢復到一個確定初始狀態,并從這個狀態開始工作。
復位電路有兩種:上電、按鈕復位,考慮到各部件影響,采用按鈕復位,當電阻給電容充電,電容的電壓為高電平,當按下按鈕時芯片復位腳近似低電平,于是芯片復位。
【單片機實習報告】相關文章:
單片機實習報告11-27
單片機實訓報告11-19
單片機實訓總結10-12
單片機點陣顯示實驗總結08-19
單片機實訓總結范文11-29
單片機實驗心得體會09-05
單片機的心得體會(精選10篇)06-16
芬蘭實習報告實習報告09-23
2022單片機課程設計心得體會12-08
實習生實習報告02-12